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THERMAL DIFFUSIVITY OF INHOMOGENEOUS SYSTEMS. 

II. EXPERIMENTAL DETERMINATION OF THERMAL DIFFUSIVITY 

G. N. Dul'nev and A. V. Sigalov UDC 536.2.023 

We investigated the methodical error in the measurement of the effective thermal 
diffusivity of inhomogeneous systems. We give the recommendation for the choice 
of the dimensions of the inhomogeneous specimen. 

In [i] we established the conditions under which the nonstationary temperature field of 
a heterogeneous system can be calculated with an admissible degree of approximation by using 
the model of a quasihomogeneous body with effective thermal diffusivity 

a = ~ / c p .  (1) 

In this paper we shall consider the problem of experimentally determining the effective 
thermal diffusivity. Measurements of thermal dlffuslvity use methods whose calculation 
formulas are based on the solution of the corresponding nonstationary problems for homogeneous 
bodies, and therefore there is a methodical error caused by the inhomogeneity of the represen- 
tative element (specimen). By the error in the measurement of the effective thermal diffusiv- 
ity we shall mean the difference between the value obtained from the experiment and the effec- 
tive parameter determined in accordance with (i): 

6a - am--a 

a 

For systems with long-range order the problem of choosing a representative element of an 
inhomogeneous system consists in determining the number of elementary cells in the specimen 
for which the deviation of the temperature field from the field of a quasihomogeneous body 
will not lead to a methodical error ~a that exceeds the admissible value. We use the follow- 
ing method of investigation: 

a) the behavior of the measuring experiment is simulated by a numerical solution ob- 
tained on a computer for the corresponding boundary-value problem for an inhomogeneous 
system; 

b) the value ~m of the thermal diffusivlty obtained on the basis of the numerical solu- 
tion by the calculation formula of the method is comparable to the effective parameter a; 

c) a computer-empirical relation is constructed for determining the dimensions of a 
representative element. 

The error in the measurement of the effective thermal diffusivity depends on the method 
of measurement, the structure of the system, the concentrations of the components and the 

Leningrad Institute of Precision Mechanics and Optics. Translated from Inzhenerno- 
Fizicheskii Zhurnal, Vol. 39, No, 5, pp. 859-861, November, 1980. Original article submitted 
September 12, 1979. 

1222 0022-0841/80/3905-1222507.50 �9 1981 Plenum Publishing Corporation 



, 
L 

the form 

relations between their properties, the ratios of the characteristic dimension of the speci- 
men (the "macrodlmension") to the characteristic dimension of the inhomogeneities (the "micro- 
dimension"). In this paper we solve the problem for two very simple two-component systems 
consisting of plates perpendicular and parallel to the heat flux; for brevity, we shall 
hereafter call these system A and system B, respectively (Fig, 1 and Fig. 3 of [I]). 

The numerical solution of the problem was carried out by a finite-difference method 
using an implicit scheme for system A and a locally one-dimensional scheme for system B [2]; 
the error in determining the value of a m was 3-5%. 

As the admissible value of error in the measurement, we used the quantity (~a) M = 10% 
and determined the condition under which I~al ~ (6a) M. We give below the results of the in- 
vestigation for three methods of measuring the thermal diffusivityo 

i. a-Calorimeter Method for a Regular Regime of the First Kind [3]. The calculation 
formula of the method has the form 

where m~ is the rate of cooling as the heat-exchange coefficient e + ~; k is the coefficient 
of the shape of the body for a plate of thickness l: 

We obtained the following recommendations for the choice of the dimensions of the representa- 
tive element. 

System A. For any combination of properties of the components which lie in the intervals 
= aa/a~ = 10-3-i, 9 = ka/X1 = 10-3-10 ~ when the number of plates in the specimen is N~6o 

l =I <10z 

System B. For ~ = 10-~-l, v = 10-a-10 ~ the "micro-macrodimenslon" ra~io is e = h/l-~ 
0.2 (Fig. 3 in [i]); for 8 = i0-~-i0 -~, ~ = I0-~-i0 -~ 

e II ~ 0.34 + 0,067 Ig ~ + 0.092 Ig ~ + 0,0175 lg ~ lg ~. 

Method of Linear Heating [3]. The calculation formula for a plate of thickness I has 

bl z 

8~ 

where b = (dt/dT); ~ is the temperature drop between the surface and the central cross sec- 
tion. 

System A. For ~ = i0-~-i0 a, ~ = 10-3-1 N ~6. 

System B. For ~ = lO-X-l, ~ = 10-I-i0, ell~ 0.i ; for ~ = !0-~-I0 -~, B = lO-Z-lO -x 

~ 0 . 1 7 6  + O.0361gv+ O.05! lg~+  O.Olllgvlg~. 

3. Method of the Instantaneous Plane Source [3]. The calculation formula is 

am= x~2~M, 
where T M is the time from the moment of action of the instantaneous source until the maximum 
temperature is reached at a distance x from the probe~ 

System A. The number of plates between the source and the heat collector can be esti- 
mated by the formula 

1511--~[ 
1 + 

System B. For the choice of the ratio ~II = h/x we obtained the following recommenda- 
tions: for 8 = 10-i-!, 9 = 10-x-10, ~ii~0.1; for 8 = I0-~-i0 -x, 9 = 10-~-i0 -I 

~11~0.170 + O.0341gv + 0:0441g~ + O.O091g~lg~. 

In the case of a system with a more complicated structure, combining elements parallel 
and perpendicular to the flux linking the components, for the choice of the ratio ~ of the 
dimension of an elementary cell to the characteristic dimension of the specimen we can recom- 
mend, from qualitative considerations~ an estimate of the form 

1.223 



e ~ rain {ett, e_t), % = 
I 

N 

NOTATION 

a, l, cp, effective thermal diffusivity, thermal conductivity, and volumetric heat 
capacity of a quasihomogeneous body; ai, li, thermal diffusivity and thermal conductivity of 
the i-th component; am, value obtained by measuring thermal diffusivity of the inhomogeneous 
specimen; ~a, relative methodical error of the measurements; ~, thickness of a flat specimen; 
N, number of plates in the representative element of system A; h, characteristic microdlmen- 
sion of system B; ell = h/~; 9 = %s/l,; 8 = a2/al. 
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GENERALIZATION OF DATA ON THE DEPENDENCE OF THE COORDINATION 

NUMBER ON THE POROSITY IN FILLINGS OF SlNTERED OR PRESSED 

GRANULAR MATERIALS 

Yu. P. Zarichnyak UDC 620.18 

An approximation equation is proposed for estimating the mean number of contacts 
with a particle in granular systems. 

The dependence of the "coordination number" N c (the average number of contacts with a 
particle) on the porosity P in free fillings of sintered or pressed granular materials has 
been given considerable attention in publications on general problems of physics and geometry 
[I-3], powder metallurgy [4-6], chemical technology [7, 8], the theory of heat and mass trans- 
fer [9-14], and the properties of alloys [15, 16]. 

For an analytical estimate of the value of the coordination number semiempirical and 
purely empirical approximation relations are employed [1, 4, 5, 8], which agree quite well 
with experimental data, as a rule, only over a narrow range of variation of the porosity 
0.3<~_P ~0.5 (Fig. i). 

The use of existing relatlonships [I, 4, 5, 8] to estimate the value of the coordination 
number for other values of the porosity leads to considerable disagreements with the results 
of measurements, or, in general, leads to absurd results (zero or negative values of the co- 
ordination numbers). The latter is obviously due to the fact that in the publications men- 
tioned the suitability of the theoretical relations employed was verified by comparison with 
experimental data over a small range of variation of the porosity, limited by the framework 
of the problems considered. 

A direct geometrical solution of the problem of determining the coordination number which 
agrees well with experiment over a quite wide range of variation of porosity 0.26 < P < 1.0 
(see curve 21 in Fig. i) was proposed in [i0]. If we analyze existing measurement results, 
we find a quite clear relationship between the change in coordination number N c and the 
porosity. 

Practically all the experimental points (29 out of 32) can be generalized quite well by 
the following approximating relationship (sea curve 22 in Fig. i): 

N c = [ 1 0 s i n 3 0 . 5 n ( 1 - - P )  @ 314--1, 0 ~ P  < 1 ,  (i) 
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